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ABSTRACT 

 
 

The status of the bottomfish complex of the Hawaiian Islands is currently assessed 
using a Schaefer surplus production model. Estimation of model parameters is based on fitting 
time series of catch-per-unit-effort (CPUE) data using an ad hoc, nonlinear least-squares 
approach. This paper investigates the application of a more formal Bayesian statistical 
framework to estimate parameters of alternative bottomfish surplus production models. The 
Bayesian approach provides direct estimates of parameter uncertainty that are easy to interpret 
and are appropriate for risk analysis. The models include both process error for biomass 
production dynamics and observation error for the CPUE data. Alternative models are 
formulated and contrasted using Akaike’s information criterion. Model averaging is applied to 
meld results of competing models where appropriate. The issue of whether model parameters 
such as intrinsic growth rate, carrying capacity, and catchability, are reliably estimable is also 
addressed. The modeling focuses on estimating the hypothetical status of the bottomfish 
complex of the main Hawaiian Islands and also includes linked estimation procedures to 
assess the status of bottomfish in the Mau and Ho’omalu Zones as well as the Hawaiian 
Archipelago using alternative production models. The sensitivity of modeling results to prior 
distributions and model assumptions is evaluated. Potential improvements to the data 
collection and modeling approach used to assess the status of the Hawaiian bottomfish 
complex are discussed. 



  
 
 



  v 
 
 
 

CONTENTS 
 Page 

 
Abstract.................................................................................................................................. iii 
 
Introduction ...........................................................................................................................1 
 
Methods .................................................................................................................................2 

Fishery Data...............................................................................................................2 
Production Model ......................................................................................................3 
Observation Error Model...........................................................................................4 
Prior Distributions .....................................................................................................5 
Prior for Carrying Capacity .......................................................................................5 
Prior for Intrinsic Growth Rate..................................................................................5 
Prior for Production Shape Parameter .......................................................................6 
Prior for Catchability.................................................................................................6 
Priors for Error Variances .........................................................................................7 
Prior for Proportions of Carrying Capacity ...............................................................7 
Posterior Distribution ................................................................................................7 
Goodness-of-Fit Criteria............................................................................................8 
Alternative Models ....................................................................................................9 
Main Hawaiian Islands Models .................................................................................10 
Archipelago Models ..................................................................................................10 
Environmental Forcing..............................................................................................12 
Sensitivity Analyses ..................................................................................................12 
Projections .................................................................................................................12 

 
Results ...................................................................................................................................13 

MHI Models ..............................................................................................................13 
Archipelago Models ..................................................................................................15 
Environmental Forcing..............................................................................................17 
Sensitivity Analyses ..................................................................................................17 
Projections .................................................................................................................17 

 
Discussion..............................................................................................................................18 
 
Acknowledgments .................................................................................................................22 
 
References .............................................................................................................................23 
 
Tables ....................................................................................................................................25 
 
Figures ...................................................................................................................................35 
 
Appendix ...............................................................................................................................59 
 



   
 
 
 

 



                                                              

INTRODUCTION 
 
 

The Hawaiian Islands bottomfish complex is made up of a set of snappers, groupers, 
and jacks that inhabit depths of up to 100 fathoms off the Hawaiian Archipelago. Although 
the deepwater bottomfish complex in Hawaii has been commercially fished since at least the 
early-1900s (Haight et al., 1993), initial assessments of Hawaiian bottomfish began in the 
1980s. Bottomfish assessments have typically used a multispecies production modeling 
approach. The geographic range of bottomfishes has been divided into three major zones for 
assessment purposes. These fishing zones are the main Hawaiian Islands (MHI), the Mau 
Zone and the Ho’omalu Zone (Fig. 1).  
 
 In the current assessment of the Hawaiian bottomfish complex, the dynamics of the 
multispecies complex in each zone is assessed using a Schaefer surplus production model 
(Moffitt et al., 2006). Commercial catches and catch rates have been collected from the MHI 
since 1948 and from the Mau and Ho’omalu Zones since 1988. The differences in catch time 
series limit the surplus production modeling to 1988-2004 in the Mau and Ho’omalu Zones 
while the surplus production model for the MHI extends from 1948 to 2004. The current 
assessment assumes that the intrinsic growth rate of Hawaiian bottomfish is similar across 
zones. Thus, a single intrinsic growth rate is estimated for all zones in the surplus production 
models. The current assessment also assumes that the relative amount of bottomfish habitat in 
each zone is proportional to the linear extent of its 100-fathom contour. The carrying capacity 
of the MHI is directly estimated while the carrying capacities of the Mau and Ho’omalu Zones 
are set based on the ratio of MHI habitat to Mau or Ho’omalu habitat multiplied by the 
carrying capacity estimate for the MHI. Thus, a single carrying capacity parameter is 
determined for the MHI and the carrying capacities of the Mau and Ho’omalu Zones are set to 
be proportional to the amount of their bottomfish habitat relative to the MHI. Overall, the 
bottomfish surplus production model for the current assessment includes linkages between the 
intrinsic growth rates and carrying capacities estimated for each fishing zone. 

 
  Status determination of the Hawaiian Islands bottomfish complex is based on the 
habitat-weighted average of the model results by fishing zone. That is, the status of the 
complex is assessed for the entire Hawaiian Archipelago as specified in the Fishery 
Management Plan. This status determination is based on the assumption that there is sufficient 
interchange among adult and larval fishes of the three zones to treat them as a single 
management unit. 
 

The data available for assessing Hawaiian Islands bottomfish status are limited 
primarily to fishery-dependent data in the current assessment model. There are currently no 
fishery-independent measures of relative or absolute bottomfish abundance. Trends in relative 
abundance are based solely on fishery catch-per-unit-effort (CPUE) data. To address the fact 
that fishing practices have changed over time, the current assessment assumes that the fishery 
catchability coefficient has increased over time. In particular, the current assessment assumes 
four separate time periods in which catchability remains constant through each period. The 
relative catchabilities of the four periods were set based on limited field observations, 
anecdotal knowledge, and subjective judgment. Under this approach, the fishery catchability 
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coefficient for one time period was estimated in the surplus production modeling, and the 
others were set based on their assumed relative catchabilities. 
 

The estimation procedure used in the current assessment is nonlinear least squares. 
There are no explicit assumptions regarding the error structure for the parameter fitting 
procedure, however. As a result, no estimates of parameter uncertainty are available in the 
current assessment model. Although this approach is straightforward, it includes ad hoc 
elements and does not provide variance estimates for model parameters or other outputs. The 
lack of variance estimates makes it difficult to weigh the risks associated with alternative 
management actions.  
 

This paper investigates the application of a more formal Bayesian statistical 
framework to estimate parameters of alternative bottomfish surplus production models. The 
Bayesian approach provides direct estimates of parameter uncertainty that are easy to interpret 
and are appropriate for risk analysis. The models include both process error for biomass 
production dynamics and observation error for the CPUE data. Alternative models are 
formulated and contrasted using Akaike’s information. Model averaging is applied to meld 
results of competing models where appropriate. The issue of whether model parameters such 
as intrinsic growth rate, carrying capacity, and catchability are reliably estimable is also 
addressed. The modeling focuses on estimating the hypothetical status of the bottomfish 
complex of the main Hawaiian Islands and also includes linked estimation procedures to 
assess the status of bottomfish in the Mau and Ho’omalu Zones as well as the Hawaiian 
Archipelago using alternative production models. The sensitivity of modeling results to prior 
distributions and model assumptions is evaluated. Potential improvements to the data 
collection and modeling approach used to assess the status of the Hawaiian bottomfish 
complex are discussed. 
 
 

METHODS 
 

Fishery Data 
 

The fishery-dependent catch data for assessing the Hawaiian bottomfish complex were 
taken from the most recent assessment (Moffitt et al., 2006). Commercial catch data for the 
primary bottomfish species (Table 1) were available for MHI and the Northwestern Hawaiian 
Islands (NWHI) (Mau and Ho’omalu Zones) during 1948-2004. Commercial bottomfish catch 
in the MHI peaked in the late 1980s and has declined since then (Fig. 2). Catches in the Mau 
and Ho’omalu Zones have fluctuated without trend since the mid 1980s (Fig. 2). 
 

Estimates of commercial fishery CPUE were also collected from Moffitt et al. (2006) 
for the MHI during 1948–2004 and for NWHI during 1988–2004 (Fig. 3). The CPUE time 
series for MHI exhibits a long-term decline (Fig. 4A) with an increase in fishing effort since 
the early 1980s. In the Mau Zone, CPUE has fluctuated without trend at low fishing effort 
during 1988-2004 (Fig. 4B). In the Ho’omalu Zone, CPUE has declined since 1988, while 
fishing effort has remained relatively stable since the early 1990s (Fig. 4C). Overall, the MHI 
and Ho’omalu Zones both exhibit declining CPUE over the past decade. 
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Production Model 
 

The alternative bottomfish production models are formulated as Bayesian-state space 
models with explicit process and observation error terms (see, for example, Meyer and Millar, 
1999). In this case, the unobserved biomass states are estimated from the observed relative 
abundance indices (CPUE) and catches based on an observation error likelihood function and 
prior distributions for model parameters (θ). The observation error likelihood measures the 
discrepancy between observed and model predictions of CPUE. 
 

The process dynamics are based on a power function surplus production model with 
an annual time step. Under this 3-parameter model, current biomass (BT) depends on the 
previous biomass, catch (CT-1), the intrinsic growth rate (R), carrying capacity (K), and a 
production shape parameter (M) for T = 2,…, N. 
 

( 1) 1
1 1 11

M
T

T T T T
BB B R B C
K

−
− − −

⎛ ⎞⎛ ⎞= + ⋅ − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

 
The shape parameter M > 0 determines where surplus production peaks as biomass 

varies in proportion to carrying capacity (Fig. 5). If 0 < M < 1, surplus production peaks when 
biomass is below ½ of K. If M > 1, then surplus production is highest when biomass is above 
½ of K. If M = 1, the production model is identical to the Schaefer model where maximum 
surplus production occurs when biomass is equal to ½ of K. The values of biomass and 
harvest rate that maximize surplus production are relevant for fishery management under the 
Magnuson Fishery Conservation and Management Act as reauthorized in 1996. For the 
discrete-time power function model, the biomass that maximizes surplus production (BMSY) is 
 

(2) ( )
1

1 M
MSYB K M

−

= ⋅ +  

 
The corresponding harvest rate that maximizes surplus production (HMSY) is 
 

(3) 
11

1MSYH R
M

⎛ ⎞= −⎜ ⎟+⎝ ⎠
 

 
and the maximum surplus production (MSY) is 
 

(4) ( )
111 1

1
MMSY R K M

M

−⎛ ⎞= − ⋅ +⎜ ⎟+⎝ ⎠
 

 
The power function model can be reparameterized in terms of the proportion of 

carrying capacity (P = B/K) to improve the efficiency of the Markov Chain Monte Carlo 
estimation algorithm. Based on this parameterization, the process dynamics for the power 
function model are 
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(5) ( ) 1
1 1 11 M T

T T T T
CP P R P P
K

−
− − −= + ⋅ − −  

 
The process dynamics are subject to natural variation as a result of fluctuations in life history 
parameters, trophic interactions, environmental conditions and other factors. In this context, 
the process error can be thought of as the joint effect of a large number of random 
multiplicative events which combine to form a multiplicative lognormal process under the 
Central Limit Theorem. Given this, the process error terms are independent and lognormally 
distributed random variables TU

T eη = where the UT are normal random variables with mean 0 
and variance σ2.  
 

The state equations define the stochastic process dynamics by relating the unobserved 
biomass states to the observed catches and the population dynamics parameters. Given the 
lognormal process error assumption, the state equations for the initial time period  
T = 1 and subsequent periods T > 1 are 
 

 (6) ( )
1 1

1
1 1 11 M T

T T T T T

P
CP P R P P
K

η

η−
− − −

=

⎛ ⎞= + ⋅ − − ⋅⎜ ⎟
⎝ ⎠

 

 
These equations set the prior distribution for the proportion of carrying capacity, p(PT), in 
each time period T, conditioned on the previous proportion. 
 
 

Observation Error Model 
 

The observation error model relates the observed fishery CPUE to the biomass of the 
bottomfish complex. Here it will be assumed that the CPUE index (I) is proportional to 
biomass with catchability coefficient Q 
 
 (7) T T TI QB QKP= =  

 
The assumption that Q is constant through time or CPUE is strictly proportional to biomass is 
relaxed in some of the alternative models below.  
 

The observed CPUE dynamics are also subject to natural sampling variation and will 
be assumed to be lognormally distributed. The observation errors are TV

T eν =  where the VT 
are iid normal random variables with zero mean and variance τ2. Given this, the observation 
equations for T = 1,…, N are 
 
 (8) T T TI QKP ν= ⋅  

 
This specifies the observation error likelihood function p(IT|θ) for each period. 
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Prior Distributions 
 

Under the Bayesian paradigm, prior distributions are employed to quantify existing 
knowledge (or the lack thereof) of the likely value of model parameters and the unobserved 
biomass states. In this context, the model parameters consist of the carrying capacity, intrinsic 
growth rate, shape parameter, catchability, the process and observation error variances, and 
the initial biomass as a proportion of carrying capacity. Unobserved biomass states are the 
proportions of carrying capacity, PT, for T > 1, conditioned on the previous proportion. In 
general, prior information was used where it was available. 
 
 

Prior for Carrying Capacity 
 

The prior distribution for the carrying capacity p(K) of MHI was chosen to be a diffuse 
normal distribution with mean ( )Kμ  and variance ( )2

Kσ  parameters 
 

 (9) 
( )2

2

1( ) exp
22

K

KK

K
p K

μ
σπσ

⎛ ⎞−
= −⎜ ⎟

⎜ ⎟
⎝ ⎠

 

 
The mean parameter was set to be 2 million pounds based on the numerical results in Moffitt 
et al. (2006).The variance parameter was set to 100 million pounds to allow for a wide range 
of carrying capacity values. In effect, this was a relatively uninformative prior for K. The 
values of carrying capacity for the Mau and Ho’omalu Zones were set based on the estimate 
of K and the relative habitat weights for the three bottomfish management zones (WMHI = 
0.447, WMau = 0.124, WHo’omalu = 0.429) as in the current assessment (Moffitt et al., 2006). 
Thus, the carrying capacities of the Mau and Ho’omalu Zones were 0.277K and 0.960K, 
respectively. 
 
 

Prior for Intrinsic Growth Rate 
 

The prior distribution for intrinsic growth rate p(R) was chosen to be an offset beta 
distribution with parameters c and d and offset Δ : 
 

 (10) ( ) ( )
( ) ( ) ( ) 11( ) 1 1 dcc d

p R x x
c d

−−Γ +
= Δ + − Δ ⋅ −

Γ Γ
 

 

This choice constrained the intrinsic growth rate estimate to be within the interval [ ], 1Δ . In 
this context, Δ  and 1 were upper and lower bounds on the intrinsic growth rates. The offset Δ  
was set to be 0.1 based on the estimate from Moffitt et al. (2006) of R = 0.46 which indicated 
that values lower than 0.1 or greater than 1 were unlikely. This range was consistent with the 
fact that the bottomfish complex included snappers with relatively high values of natural 
mortality (M > 0.25) and moderate values of Brody growth coefficients (Martinez-Andrade, 
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2003). The central tendency of the intrinsic growth rate prior was approximated using the 
mean generation time of a hypothetical bottomfish species with egg survival of 1/10000, natural 
mortality of 0.3, full maturation at age 3 producing 100,000 eggs, and an 8% annual increase 
in fecundity from age 4 to age 15. This life history pattern was considered to be plausible for 
opakapaka, one of the more abundant species in the bottomfish complex. Assume these life 
history parameters lead to an intrinsic growth rate of R ≈ 0.57 by using the mean generation 
time approximation of intrinsic growth rate (McAllister et al., 2001). Although this is a crude 
approximation for R, it gives a rough idea of the scale of the prior.  The values of c and d were 
set to 12.0. This implied that the mean of the beta distribution was 0.5 with a coefficient of 
variation (CV) of 20%. Given this, the mean of the offset beta distribution was then 

0.55Rμ = with a CV of 18%. Overall, the mean of this informative prior for R was about 25% 
higher than the value reported in Moffitt et al. (2006). Sensitivity to the choice of the 
informative prior distribution for R is examined below. 
 
 

Prior for Production Shape Parameter 
 

The prior distribution for the production function shape parameter p(M) was chosen to 
be a gamma distribution with scale parameter λ and shape parameter k: 
 

 (11) 
( )

( )

1 exp
( )

k kM M
p M

k
λ λ− −

=
Γ

 

The values of the scale and shape parameters were set to λ = k = 2. This choice implied that 
the mean of p(M) was μM = 1, which corresponds to the value of M under the Schaefer 
production model. This choice also implied that the CV of the shape parameter prior was 
71%. In effect, the shape parameter prior was centered on a Schaefer model as the default 
with substantial flexibility to estimate a nonsymmetric production function. 
 
 

Prior for Catchability 
 

The prior for catchability p(Q) was chosen to be a diffuse inverse-gamma distribution 
with scale parameter λ and shape parameter k.  
 

 (12) 
( )

( 1)

( ) exp
k kQp Q

k Q
λ λ− + ⎛ ⎞−

= ⎜ ⎟Γ ⎝ ⎠
  

 
 
The scale and shape parameters were set to be λ = k = 0.001. This choice of parameters 
implies that 1/Q has a mean of 1 and a variance of 1000. As a result, the prior for catchability 
is effectively ( ) 1p Q Q−∝ . Since 1/Q is unbounded at Q = 0, an additional numerical 
constraint that Q lie within the interval [0.0001, 10] was imposed. 
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Priors for Error Variances 
 
Priors for the process error variance p(σ2) and observation error variance p(τ2) were 

chosen to be inverse-gamma distributions, a natural choice for dispersion priors (Congdon, 
2001). For the process error variance prior, the scale parameter was set to λ = 4 and the shape 
parameter was k = 0.01. This choice of parameters produces an 80% confidence interval of 
approximately [0.04, 0.08] for σ. Similarly, for the observation error variance prior, the scale 
parameter was set to λ = 2 and the shape parameter was k = 0.01. This choice of parameters 
gives an 80% confidence interval of approximately [0.05, 0.14] for τ. Thus, the observation 
error variance was assumed to be greater than the process error variance. 
 
 

Priors for Proportions of Carrying Capacity 
 

Prior distributions for the time series of biomass in proportion to carrying capacity, 
p(PT), are determined by the lognormal distributions specified in the process dynamics. The 
mean proportion of carrying capacity for the initial time period was set to be unity for each 
region in the absence of information on the likely value. Based on previous applications of 
this type of Bayesian surplus production model, the relative trends in biomass and fishing 
mortality estimates were not expected to be influenced by the choice of the mean of the 
lognormal distribution. This expectation was evaluated in the sensitivity analyses below. 
 
 

Posterior Distribution 
 

The posterior distribution needs to be calculated to make inferences about the model 
parameters. From Bayes’ theorem, the posterior distribution given catch and CPUE data D, 
p(θ|D), is proportional to the product of the priors and the likelihood of the CPUE data. 
 

 (13) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

1 1

( | ) |
N N

T T
T T

p D p K p R p M p Q p p p P p Iθ σ τ θ
= =

∝ ∏ ∏   

 
There is no closed form expression to determine parameter estimates from the posterior 
distribution in (13).  
 

Under the Bayesian paradigm, parameter estimation for multiparameter nonlinear 
models, such as the bottomfish production model, is typically based on simulating a large 
number of independent samples from the posterior distribution. In this case, Markov Chain 
Monte Carlo (MCMC) simulation (Gilks et al., 1996) was applied to numerically generate a 
sequence of samples from the posterior distribution. I used the WINBUGS software 
(Spiegelhalter et al., 2003) to set the initial conditions, perform the MCMC calculations, and 
summarize the results (see Appendix).  
 

MCMC simulations were conducted in an identical manner for each of the alternative 
models described below. Two chains of 210,000 samples were simulated in each model run. 
The first 10,000 samples of each chain were excluded from the estimation process. This burn-
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in period removed any dependence of the MCMC samples on the initial conditions. Next, 
each chain was thinned by 2 to remove autocorrelation. That is, every other sample was used 
for inference. As a result, 100,000 samples from the posterior were used for summarizing 
model results. Convergence of the MCMC simulations to the posterior distribution was 
checked using the Brooks-Gelman-Rubin (BGR) convergence diagnostic (Brooks and 
Gelman, 1998). This diagnostic was monitored for several key model parameters (intrinsic 
growth rate, carrying capacity, production function shape parameter, catchability, initial 
proportion of carrying capacity) as well as the root-mean squared error (RMSE). 
 
 

Goodness-of-Fit Criteria 
 

Model residuals were used to measure the goodness of fit of the alternative production 
models. Residuals for the CPUE series are the log-scale observation errors εT. 
 
 (14) ( ) ( )ln lnT T TI QKPε = −  

 
Non-random patterns in the residuals indicate that the observed CPUE does not conform to 
one or more model assumptions. The RMSE of the CPUE fit provided another diagnostic of 
the model goodness of fit with lower RMSE indicating a better fit when comparing models 
with the same number of parameters. The Akaike Information Criterion (AIC) can be used to 
contrast non-nested models with different numbers of parameters (p) applied to the same data 
(Burnham and Anderson, 2002), where 
 

(14) 

2

1ln 2

N

T
TAIC N p

N

ε
=

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⋅ +
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
  

 
The first term in the expression for AIC is equivalent to minus 2 times the log-

likelihood, a measure of goodness of fit, while the second term is a parameter penalty. In this 
application, a bias-corrected version of AIC (AICC) was used for model comparison since the 
ratio of the sample size to the number of free parameters is less than 10 (see, for example, 
Burnham and Anderson, 2002). 
 

(15) 
( )2 1

1
p p

AICC AIC
N p

+
= +

− −
 

 
The model with the lowest value of information criterion among competing models 

gives the best fit to the data. To rank a set of models, it is convenient to use the difference (Δk) 
in AIC value (AICk) from the best fitting model (AICMIN) where, for model k, 

k k MINAIC AICΔ = − . The AIC differences determine the relative likelihood of alternative 
models. The likelihood of model k (Lk), for example, is proportional to the exponential of the 
AIC difference  
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(16) 1exp
2k kL ⎛ ⎞∝ − Δ⎜ ⎟

⎝ ⎠
 

 
The relative weight of evidence in favor of each model, also known as the Akaike weight 
(wk), can be obtained by normalizing the model likelihood across the set of operating models  
 

(16) 

1exp
2

1exp
2

k

k

j
j

w

⎛ ⎞− Δ⎜ ⎟
⎝ ⎠=

⎛ ⎞− Δ⎜ ⎟
⎝ ⎠

∑
 

 
The Akaike weights sum to one and provide a measure of the probability that each model is 
true given the fixed data. In practice, the ratios of the Akaike weights will be used to 
characterize the evidence in favor or against a given model and to average results from 
competing models. 
 

Interpreting the Akaike weights as posterior model probabilities, the model-averaged 
value of a parameter θ conditioned on the observed data D is the weighted sum of the 
expected values of θ under the alternative models Mk 
 
(17) ( ) ( )| | ,k k

k
E D w E M Dθ θ= ∑  

 
Similarly, the variance of the parameter θ is equal to the weighted sum of the variances of θ 
under the alternative models as adjusted by their conditional means 
 
 (18) ( ) ( ) ( )( ) ( )2 2| | , | , |k k k

k
Var D w Var M D E M D E Dθ θ θ θ= + −∑  

 
This estimate of the variance of θ accounts for both parametric and model uncertainty. 
 
 

Alternative Models 
 

Two sets of alternative production models were investigated: single zone and 
multizone. A set of four models were developed for a single zone, MHI. This was conducted 
to evaluate the status of the MHI in isolation and for comparison with the MHI estimates in 
Moffitt et al. (2006). A second set of 10 models were developed for the MHI, the Mau Zone, 
and the Ho’omalu Zone all together. In these models, parameter estimates of carrying capacity 
or intrinsic growth or production function shape were linked across zones, similar to the 
analysis in Moffitt et al. (2006). This was conducted to discern whether there was sufficient 
data to assess status in the separate zones as well as for comparison with the results of Moffitt 
et al. (2006). 
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Main Hawaiian Islands Models 
 

Each of the four alternative models for the MHI was fit using the MHI catch and 
CPUE data for 1948–2004 (Table 2.1). Model 1 incorporated power function dynamics and a 
constant fishery catchability. This baseline model allowed for nonsymmetric production from 
the bottomfish complex. It also used a simpler constant fishery catchability assumption than 
the 4-period fishery catchability assumption in Moffitt et al. (2006).  
 

The second MHI model was identical to the first but included catch errors (Table 2.1). 
This was conducted to investigate the effects of underreported commercial catch on parameter 
estimates. Annual catch error distributions were assumed for two time periods: 1948–1989 
and 1990–2004. Annual catch errors were assumed to be uniformly distributed between 0% to 
20% for the 1948–1989 period. This assumption was modeled by including a uniform prior on 
annual catch. For the 1990–2004 period, catch errors were believed to be relatively low (Bob 
Moffitt, pers. comm.) and the annual catch error was assumed to be uniformly distributed 
between 0% and 2%. 
 

The third MHI model was identical to the first (Table 2.1) but incorporated the four 
period catchability assumption from Moffitt et al. (2006). The four time periods for Q were 
chosen to reflect changes in the fishery. In this approach, changes in Q were assessed relative 
to the estimate for 1985–1991 (QBASELINE). Q was assumed to be 70% of QBASELINE during 
1948–1967. – was assumed to increase to 80% of QBASELINE during 1968–1984. In the current 
period (1992–2004), Q was assumed to be 120% of QBASELINE.  
 

The fourth MHI model incorporated similar assumptions as in model 1 but used a 
Schaefer curve instead of the power function (Table 2.1). This model explored whether 
assuming Schaefer dynamics provided a more parsimonious fit to the MHI data. 
 
 

Archipelago Models 
 

The 10 alternative multizone models for the Hawaiian Archipelago were 
simultaneously fit to the MHI CPUE data for 1948–2004 and the Mau and Ho’omalu CPUE 
data for 1988–2004 (Table 2.2). These multizone models provided a closer approximation to 
the current assessment model than the single-zone models since they fit CPUE data in each 
fishing zone. 
 

Model 5 was an extension of model 4 to incorporate the Mau and Ho’omalu Zone 
data. In this case, the carrying capacities of the Mau and Ho’omalu Zones were assumed to be 
proportional to their relative habitat. The intrinsic growth rate was assumed to be the same 
across zones, and each zone was assumed to have a constant catchability through time.  
 

Model 6 was the same as model 5 but incorporated the 4-period catchability 
assumption from Moffitt et al. (2006). This was conducted to evaluate whether constant or 
time-varying catchability provided a better fit for a multizone model. In effect, model 6 was 
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the baseline multizone model since it most closely reflected the modeling assumptions in 
Moffitt et al. (2006).  
 

Model 7 was identical to model 5 with the exception that it used power function 
dynamics with identical shape parameters across zones (Table 2.2). This was conducted to 
evaluate whether a shape parameter would improve the fit to the multizone data.  
 

Model 8 was a variant of model 6 that estimated a separate intrinsic growth rate for 
each zone (Table 2.2). This was conducted to evaluate whether productivity differed among 
zones assuming time-varying catchability for the MHI.  
 

Model 9 was an extension of model 8 that included a density-dependent catchability 
model for the MHI (Table 2.2). In this case, the observation equation for the MHI CPUE was 
modified to include an exponent (qEXP) which had a uniform prior distribution on the interval 
[0.1, 10]  
 
 (17) ( ) EXPq

T T TI Q KP ν= ⋅  
 
Thus, model 9 had one more free parameter to be estimated than model 8. 
 

Model 10 was identical to model 8 but estimated carrying capacity capacities for each 
zone rather than assuming that zonal differences in K were proportional to their relative 
bottomfish habitat (Table 2.2). This was conducted to investigate whether there was sufficient 
information to freely estimate carrying capacities for each fishing zone. 
 

Model 11 was a variant of model 7 that estimated intrinsic growth rates for each zone 
(Table 2.2). This was conducted to investigate whether a common shape parameter and 
separate intrinsic growth rates were estimable by fishing zone. 
 

Model 12 was identical to model 11 but assumed power function dynamics for the 
MHI and Schaefer dynamics for the Mau and Ho’omalu Zones (Table 2.2). This was 
conducted to see if there was sufficient information to estimate a shape parameter for the zone 
with the longest time series.  
 

Model 13 was a variant of model 8 that used three periods for time-varying Q instead 
of the four periods from Moffitt et al. (2006). In this case, the 1st and 2nd periods were 
combined into a single period (1948–1984) in which Q was set to be 80% of QBASELINE. This 
was conducted to see if there was any improvement in model fit with a simpler assumption 
about the temporal changes in Q.  
 

Model 14 was a variant of the baseline model 6 that included a simple estimate of 
recreational bottomfish catch (Table 2.2). In this case, it was assumed that recreational 
bottomfish catch was 30% of the commercial catch through time. This assumption was based 
on a short-term recreational angler survey conducted in 1990–1991 (Hamm and Lum, 1992). 
In particular, Hamm and Lum (1992, Table 5) estimated the recreational bottomfish catch on 
Oahu during March1990 to February 1991 to be 178,969 pounds, roughly 30% of the 
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commercial bottomfish catch (590,450 lbs) from MHI during calendar year 1990. Overall, 
model 14 was used to evaluate the potential effect of including recreational catch on reference 
points and status determination criteria. 
 
 

Environmental Forcing 
 
An exploratory investigation of the association between the best-fitting multizone 

model residuals and sea surface height (SSH) anomalies was also conducted. This was done to 
evaluate whether additional variation in observed CPUE values for each zone could be 
explained by zonal SSH indices from satellite altimeter data, a proxy for local ocean 
productivity. SSH anomalies from the merged satellite altimeter data set were obtained from 
AVISO (e.g., Ducet et al., 2000) during 1993–2000. Annual SSH anomaly data were averaged 
over winter months (January–March) for representative rectangular regions within each zone. 
The southwest and northeast corners of the rectangular regions were: MHI (18˚N 160˚W and 
20˚N 154˚W), Mau Zone (22˚N 164˚W and 24˚N 162˚W), and Ho’omalu Zone (27˚N 179˚W 
and 29˚N 176˚W). Pearson correlations were used to measure the association between the 
zonal CPUE residuals and the contemporaneous SSH anomaly series. 
 
 

Sensitivity Analyses 
 

Two sensitivity analyses were also conducted on single and multizone models. The 
first evaluated the effect of assuming a more diffuse informative prior distribution for intrinsic 
growth rate. The baseline prior assumption was that intrinsic growth rate had an offset beta 
distribution with mean of μR = 0.55 with a CV = 18%. In the sensitivity analysis, the prior for 
R was changed to a beta distribution with a mean of μR = 0.5 and a CV = 57%. This allowed 
for more deviation from the central tendency of the prior distribution in the estimation 
process. This analysis was applied to the MHI models 1 and 4 and to the multizone model 6. 
 

The second sensitivity analysis examined the effect of choosing a lower initial 
proportion of carrying capacity for the MHI. The baseline prior assumption for the initial 
proportion of K in 1948 was that P1 = 1.0. Similarly, the initial values of PT for T > 1 were set 
to be: PT = 0.9 for 1948–1977, PT = 0.75 for 1978–1987, and PT = 0.5 for  
1988–2004. In the sensitivity analyses, the initial proportion of K and the initial values of PT 
for T > 1 were set to be one-half of the baseline value. This change was applied to the MHI 
models 1 and 4 and to the multizone model 6 to see if model results were affected by prior 
assumptions about the initial biomass of the bottomfish complex in the MHI, which was 
subject to fishing prior to 1948. 
 
 

Projections 
 

Two-year projections were conducted using the best-fitting single- and multizone 
models. For the single-zone models, the projections were conducted only for MHI while for 
the multizone models, projections were conducted for the MHI, Mau, and Ho’omalu Zones. 
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Two single-zone projections were run: status quo H and HMSY. The status quo fishing 
mortality projection provided stochastic biomass and catch trajectories assuming the MHI 
harvest rate in 2004 (H2004 ≈ 0.43) was realized in 2005–2006. The HMSY projection provided 
biomass and catch trajectories assuming that an immediate reduction to HMSY was realized in 
2005–2007. The reduction to HMSY in the MHI would be about 18% below H2004.  
 

Similarly, two multizone projections were run: status quo H, and HMSY. The F status 
quo projection assumed that the H2004 values were realized in each zone during 2005–2006; 
these values were H2004 ≈ 0.43 in the MHI, H2004 ≈ 0.13 in the Mau Zone, and H2004 ≈ 0.06 in 
the Ho’omalu Zone. Under the HMSY projection, it was assumed that the harvest rate in the 
MHI was equal to HMSY during 2005–2006 and remained equal to the H2004 value in the Mau 
and Ho’omalu Zones. As in the single-zone projections, the multizone projections provided 
stochastic outcomes for biomass and catch in each fishing zone. 
 
 

RESULTS 
 

MHI Models 
 

For each of the four single-zone MHI models, the Brooks-Gelman-Rubin diagnostic 
indicated that the MCMC chains had converged to the posterior distribution. Plots of the BGR 
statistics for model 1, the most likely model (see below) were typical (Fig. 6). The BGR 
approached unity for each parameter (R, K, M, Q, and P1) and the RMSE indicating 
convergence was achieved. 
 

The RMSE diagnostic was smallest for model 1 (Table 2.1), indicating that this model 
provided the best fit to the CPUE data. The residual patterns of the four alternative models 
were generally similar (Figs. 7 and 8), which was reinforced by the moderate differences in 
RMSE. The block of positive residuals in the early 1950s suggested that the model structure 
may not be appropriate for that time period. The mismatch between observed and predicted 
CPUE at the start of the assessment horizon suggested that aggregate bottomfish parameters 
or process dynamics changed in the mid-1950s. Although there was a consistent negative time 
trend in the residuals across models, this trend was not significantly different from 0 (P > 0.2) 
based on robust regression analyses (Rousseeuw and Yohai, 1984; S-PLUS, 2001).There was 
also an apparent time trend in the magnitude of negative residuals (Fig. 7), especially for 
models 3 and 4. This pattern suggested that model structure did not fully account for some 
temporal changes in the fishery CPUE series. Otherwise, the residuals appeared to have a 
more or less random pattern of positive and negative values across models (Fig. 7) and 
indicated a reasonable fit, at least from the 1960s to the present. 
 

Parameter estimates were also similar among the four models (Table 2.1). Estimates of 
catchability ranged from 2.2·10-4 to 2.5·10-4 with CVs of 7–9%. Estimates of intrinsic growth 
rate ranged from 0.68 to 0.75, roughly a 10% percent difference from maximum to minimum, 
and had CVs of 7–9%. The range of carrying capacity estimates was 3095 to 3507 thousand 
pounds (13% difference) with CVs of 6–7%. The initial proportion of carrying capacity in 
1948 ranged from 0.93 to 1.03 (11% difference) with CVs of 10–11%. The production shape 
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parameter was estimated to be between 1.11 and 1.48 (33% difference) with CVs of 20-25%. 
The most variable parameter across models was the production shape parameter which had 
the largest differences among models and the highest CVs. In contrast, the least variable 
parameter across models was the intrinsic growth rate. 
 

The error variance (nuisance) parameters were also similar among models. The 
process error variance ranged from 0.38 to 0.48 (26% difference) with CVs of 31–32%. 
Similarly, the observation error variance was between 0.11 and 0.13 (18% difference) with 
CVs of 64–77%. The ratios-of-means of process error to observation error were between 3.4 
and 4.4. This indicated that the lack of fit to the production function dynamics was 3- to 4-
fold greater than the lack of fit to the CPUE indices.  
 

Akaike information criteria of the MHI models were compared to discern the most 
probable model given the data. Since model 2 used distributions of annual catch data that 
were greater than the nominal values used in the other models, it was not compared to the 
other models using AIC. Of the three remaining models, model 1 provided the best fit to the 
MHI data with a model probability of 0.62 (Table 3.1). Model 1 was about 100-fold more 
likely than model 3 and almost 2-fold more likely than model 4 based on the evidence ratios 
(Table 3.1).  
 

Parameter estimates from the best-fitting model were moderately correlated (ρ < 0.4) 
with two exceptions. The intrinsic growth rate (R) and the production shape parameter (M) 
had a strong negative correlation (ρ = -0.51). Similarly, the carrying capacity (K) and 
catchability (Q) had a very strong negative correlation (ρ = -0.81). 
 

MSY-related parameter estimates were generally similar across models (Table 3.1). 
Estimates of BMSY for MHI based on the mean value of the posterior distribution ranged from 
1640 to 1767 thousand pounds with a model-averaged estimate of 1683 thousand pounds. The 
model-averaged BMSY estimate was about 6% higher than the current estimate of 1593 
thousand pounds in Moffitt et al. (2006). The estimates of MSY ranged from 627 to 679 
thousand pounds. The model-averaged MSY estimate was about 76% higher than the current 
estimate. The MSY harvest rate estimates averaged 0.38 for the models included in the 
averaging. As such, the model-averaged estimate of HMSY was about 67% above the current 
estimate of HMSY = 0.23. Overall, the model estimates of BMSY were similar to the current 
estimate while the model estimates of MSY and associated harvest rate were significantly 
higher.  
 

Status determination criteria for the MHI bottomfish complex were evaluated within 
each model. Overfished status in year T was judged by the ratio of BT to BMSY. Overfishing 
status was measured by the ratio HT/HMSY. Plots of the trajectories of overfished and 
overfishing status showed a similar pattern across models. Since the evidence ratios did not 
strongly support a single model, the model averaged estimate of status was used to 
characterize the status of the MHI bottomfish complex (Fig. 9). The MHI bottomfish complex 
experienced a one-way trip from high biomass and low fishing mortality in the past to low 
biomass and high fishing mortality at present. During 1948–1981, biomass of the MHI 
bottomfish complex was at or above BMSY and harvest rates were below HMSY. In 1982, 
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biomass and harvest rate status changed with B1982 ≈ BMSY and H1982 ≈ HMSY. In 1983, biomass 
decreased to less than BMSY and harvest rate increased to more than HMSY. Since then, annual 
biomass has remained below BMSY and harvest rate has exceeded HMSY. In 2004, the model-
averaged biomass in the MHI was about 44% of BMSY while the harvest rate was about 1.36 
times HMSY. As a result, in 2004 the MHI bottomfish complex would be considered to have 
depressed biomass (B2004 less than 0.7 of BMSY) and excess fishing mortality (H2004 less that 
HMSY). 
 
 

Archipelago Models 
 

The BGR diagnostics indicated that all model simulations converged to the posterior 
distribution with the exception of model 10. In model 10, there were separate carrying 
capacity parameters for each zone. Nonconvergence of this model suggested that the carrying 
capacities of the individual zones were not identifiable without the habitat constraint. 
Convergence diagnostic plots for model 6, the most likely model, were typical (Fig. 10). 
 

Model 6 had the smallest RMSE (Table 2.2) and produced the best fit to the MHI 
CPUE data. Residuals for the Mau and Ho’omalu Zones under model 6 appeared random 
(Figs. 11 and 12). The residuals for MHI under model 6 had a moderate patterning similar to 
the most likely single zone MHI model with a block of positive residuals in the 1950s and a 
suggestion of an increase in the magnitude of negative residuals in recent years. Although 
residuals for each zone had a moderate negative time trend, this trend was not significant (P > 
0.4) based on robust regression analysis (Rousseeuw and Yohai, 1984). Overall, the residuals 
for the best fit model indicated a reasonable, albeit noisy, fit to the CPUE data across zones. 
 

Parameter estimates for MHI were relatively similar across the multizone MHI models 
(Table 2.2). The catchability estimates for the MHI ranged from 2.05 to 2.47, excluding the 
density-dependent estimate from model 9, with CVs of 7–8%. The intrinsic growth rate 
estimates were also similar across models, ranging from 0.70 to 0.75 with CVs of 7–8%. 
Carrying capacity estimates differed by up to 8% and ranged from 3.3 to 3.6 million pounds 
with CVs of 5–6%. Estimates of initial biomass in proportion to carrying capacity for the 
MHI were not significantly different from unity across models with CVs of 9–10%. Similarly, 
the production shape parameter estimates were not significantly different from unity across 
the three models which included this as a free parameter. This indicated that there was 
insufficient information to estimate production shape for the MHI. Observation and process 
error variance estimates were also similar across models with roughly a four-to-one ratio of 
process to observation error, similar to the single-zone modeling results.  
 

The Akaike information criteria values indicated that model 6 was by far the best 
fitting model. The evidence ratios of model 6 to the other multizone models exceeded 500:1 
and the other multizone models had model probabilities of 0.002 or less. Thus, model 6, with 
a constant intrinsic growth rate and the 4-period catchability assumption, was clearly the 
dominant model and provided the basis for the multizone model-averaged parameter 
estimates. 
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Parameter estimates for the best-fitting multizone model exhibited moderate 
correlation, for the most part. However, some important model parameters exhibited strong 
correlations. The carrying capacity estimate (K) was strongly, negatively correlated with the 
intrinsic growth rate estimate (ρ = - 0.54) and also exhibited strong negative correlations with 
catchability estimates for each of the three zones: QMHI (ρ = - 0.72), QMau (ρ = - 0.66), and 
QHo’omalu (ρ = - 0.81). The catchability estimate for MHI was strongly negatively correlated 
with K (ρ = - 0.72) and exhibited a strong positive correlation with intrinsic growth rate (ρ = 
0.61) as well as catchability estimates for the other two zones: QMau (ρ = 0.42), and QHo’omalu 
(ρ = 0.57). Catchabilities for the Mau and Ho’omalu Zones were also strongly positively 
correlated (ρ = 0.56). Last, the estimate of initial proportion of carrying capacity and the root 
mean squared error for the Ho’omalu Zone were strongly positively correlated (ρ = 0.66). 
Overall, estimates of several parameters covaried substantially for the best-fitting multizone 
model indicating that some parameter pairs were not well identified given the data. 
 

Model-averaged estimates of BMSY for the three zones and the Archipelago (Tables 
3.2.1-3.2.4) were about 3% higher than the estimates of Moffitt et al. (2006). Given that the 
CVs of the model-averaged estimates were about 6%, there was no significant difference 
between the estimates of zonal carrying capacities from this study and Moffitt et al. (2006). In 
contrast, model-averaged estimates of MSY and HMSY were about 50% higher than in Moffitt 
et al. (2006) across all three zones and the Archipelago. The substantial difference between 
the MSY and HMSY estimates derives from the magnitude of the difference in intrinsic growth 
rates between this study and Moffitt et al. (2006). 
 

Status determination criteria for the MHI from the multizone models showed the same 
pattern as in the single zone results. The MHI bottomfish complex experienced a one-way trip 
from high biomass in the 1950s–1970s to low biomass in the 1990s–2000s (Fig. 13). The 
model-averaged biomass for the MHI in 2004 was about 53% of BMSY while the harvest rate 
in 2004 was about 1.21 times HMSY. Thus, in 2004 the MHI bottomfish complex would be 
considered to have depressed biomass (B2004 less than 0.7 of BMSY) and experiencing excess 
fishing mortality (H2004 less than HMSY) if assessed as a separate management unit.  
 

In contrast, although the Mau and Ho’omalu Zones both show decreased biomass from 
1988 to 2004 (Figs. 14 and 15), biomass in both zones remains well above BMSY. In 2004, 
model-averaged estimates of the biomasses in the Mau and Ho’omalu Zones were 64% and 
69% above BMSY. Similarly, the harvest rate estimates for the Mau and Ho’omalu Zones have 
not exceeded HMSY during 1988–2004. In 2004, the model-averaged estimates of harvest rate 
in the Mau and Ho’omalu Zones were 38% and 18% of HMSY. As a result, the Mau and 
Ho’omalu Zone bottomfish complexes would not be considered to have depressed biomass 
nor experiencing excess fishing mortality in 2004. 
 

Status determination criteria for the entire Archipelago are available since 1988 (Fig. 
16). Model-averaged estimates of biomass and harvest rate status for the Archipelago, 
calculated on the basis of the bottomfish habitat fractions by zone, indicate that relative 
biomass has declined since 1988 but still remains above BMSY. In particular, Archipelago 
biomass was estimated to be 17% above BMSY in 2004. Relative harvest rate has also declined 
since 1988 and was estimated to be about 67% of HMSY in 2004. This indicates that the 
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Archipelago would not be considered to have depressed biomass and was not experiencing 
excess fishing mortality  in 2004. 
 
 

Environmental Forcing 
 

SSH anomalies exhibited strong negative correlations with bottomfish CPUE residuals 
in the MHI and the Mau Zone (Figs. 17 and 18). There was also a moderate negative 
correlation between SSH anomalies and CPUE residuals for the Ho’omalu Zone (Fig. 19). 
Thus, there was a consistent pattern of negative association between SSH anomalies and 
CPUE residuals in recent years. It is unknown whether this pattern is consistent prior to and 
subsequent to the period examined (1993–2000). Regardless, this finding suggests that the fit 
of bottomfish production models might be improved with the additional of a structural 
component to represent the effect of SSH anomalies on CPUE. 
 
 

Sensitivity Analyses 
 

The sensitivity analysis for the prior distribution of the intrinsic growth rate showed 
that assuming a higher CV significantly increased the mean of the posterior distribution for R 
(Table 4).  Intrinsic growth rate estimates for the most likely MHI models increased by 21–
29% from the baseline model. The increased estimates of R indicated that the informative 
prior on intrinsic growth rate with a mean of 0.55 had the effect of constraining R to be lower 
than indicated by the CPUE data. In contrast, the effects of the informative prior for R on 
posteriors of carrying capacity, initial proportion of carrying capacity, and the current 
proportion of carrying capacity for MHI were not significant relative to the variability in the 
baseline estimates. Overall, the sensitivity results indicated that the intrinsic growth rate 
estimate of MHI was reduced by the informative prior on R.  
 

The sensitivity analysis of the lower prior mean for the initial proportions of MHI 
carrying capacity showed that assuming a lower mean did not substantially affect the results 
(Table 4). Although the lower prior mean assumption reduced the estimates of initial and 
current proportions of K, the reductions were not significant in comparison to the variability 
in the baseline estimates. Thus, the model results were only moderately affected by the 
assumed initial proportions of carrying capacity. This also suggested there was insufficient 
information to estimate the initial proportion of carrying capacity even if it was significantly 
different than unity. 
 
 

Projections 
 

Model-averaged projections for MHI under the single-zone models show that the 
relative biomass status would be expected to improve under HMSY scenario by about 7% from 
2005 to 2006 with B2006/BMSY = 0.54 (Fig. 20). In contrast, biomass status would be expected 
to improve by only 1% under the status quo fishing mortality scenario, an amount that is not 
significantly different from 0. Similarly, catches under the HMSY scenario would increase by 
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about 14% (+ 42,000 lbs) from 2005 to 2006 in comparison to about 2% (+ 7,000 lbs) under 
the status quo scenario (Fig. 20). Thus, the HMSY scenario provides a larger improvement in 
relative biomass status and catch. 
 

Projections for MHI under the best-fitting multizone model show similar results to the 
single-zone model-averaged results (Fig. 21). Relative biomass status and catch would 
improve by about 8% during 2005–2006 under the HMSY scenario B2006/BMSY = 0.66 and 4% 
under the status quo scenario. In this case, there is a larger improvement for the status quo 
scenario under the multizone model due to correlation among parameters across zones. 
Regardless, the HMSY scenario provides a larger relative increase in biomass and catch during 
2005–2006. 
 
 

DISCUSSION 
 

Based on the hypothetical results of applying the alternative production modeling 
approach, the current status of the Hawaiian bottomfish complex differs by fishing zone. In 
the MHI, bottomfish would be considered overfished and experiencing overfishing if assessed 
as a separate management unit. This conclusion is consistent for the individual single- and 
multizone modeling results as well as for the model-averaged results. Thus, the current status 
of the MHI bottomfish complex is robust to model uncertainty over the set of models that 
were examined in this study. Nonetheless, the current status of the MHI bottomfish complex 
is less optimistic under the single-zone versus the multizone models. The single-zone results 
indicate that current fishing mortality is 36% above the overfishing threshold while the 
multizone model results suggest that F2004 was only 21% above the threshold. This difference 
in status estimation arises because the multizone model parameters are correlated when the 
CPUE data are fit simultaneously in the three fishing zones. Similarly, the single-zone results 
indicate that biomass in 2004 was 44% of BMSY versus 53% for the multizone models. 
Overall, the results suggest that fishing mortality needs to be reduced by at least 21% and 
possibly by twice that amount to eliminate excess fishing mortality in the MHI. Similarly, 
biomass needs to be rebuilt by about twofold to lie within the probable range of BMSY. While 
the multizone results are more consistent with the operating hypothesis that there is sufficient 
interchange of larvae and/or adult fish across zones to justify joint estimation of parameters, it 
would be prudent to consider the ramifications if this assumption is not correct. 
 

In contrast, bottomfish in both the Mau and Ho’omalu Zones would not be considered 
overfished nor experiencing overfishing. In 1990, bottomfish of the Mau Zone were being 
harvested below but near the overfishing threshold. Since then, F has been reduced and has 
remained less than 50% of HMSY in recent years. Biomass in the Mau Zone has not fallen 
below the overfished threshold during 1988–2004 and is currently over 50% above BMSY. 
Similarly, it appears that the Ho’omalu Zone bottomfish complex has never been close to 
experiencing overfishing or being in an overfished status during 1988–2004. Currently, the 
Ho’omalu Zone bottomfish are being harvested at less than 20% of HMSY while Ho’omalu 
Zone biomass is more than 50% above BMSY. Thus, the Mau and Ho’omalu Zone bottomfish 
stocks would have to be considered healthy and lightly exploited, particularly in comparison 
to the MHI bottomfish complex. 
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Given the current healthy status of bottomfish in the Mau and Ho’omalu Zones, the 

overall status of bottomfish in the Archipelago as a whole is also positive. Harvest rates are 
currently two-thirds of the overfishing threshold, and biomass is over 15% above BMSY. It also 
appears that the Archipelago has not been overfished during the 1988–2004 assessment time 
horizon, although harvest rates approached or were at the overfishing threshold in the 1990s. 
While bottomfish on an Archipelago-wide basis are currently not overfished or experiencing 
overfishing according to the results of this study, it should be noted that this evaluation is 
contingent on the assumption that the linkage among bottomfish in the three zones is 
relatively strong and consistent through time. 
 

Constant catchability models provided the best fit to the single-zone data for MHI. 
The best-fitting single-zone models had a constant Q but also included the shape parameter 
for the surplus production curve. However, the point estimate of the shape parameter was not 
significantly different from 1, suggesting that the inclusion of the shape parameter may have 
been aliasing another effect related to the decreasing abundance of MHI bottomfish 
throughout the time series. One such potential effect would be increasing catchability. 
Regardless, the model selection criterion suggested that either catchability changes through 
time were minor or not detectable within the single-zone modeling context. Constant 
catchability seems plausible since the commercial bottomfish fishery has operated with 
similar handline gear since the 1950s (Haight et al., 1993). Although the design of the hooks, 
bait, and gear deployment methods have not changed much if at all, the use of powered reels, 
modern navigational equipment, and fish finders has likely increased fishing power through 
time. However, other factors are likely to have affected overall bottomfish catchability in an 
unknown manner. For example, changes in the species composition of the bottomfish 
complex may have reduced or increased catchability through time. Similarly, changes in the 
composition of the fishing fleet and the relative experience of fishermen could have reduced 
or increased catchability on average. Nonetheless, it seems likely that there was some increase 
in relative fishing power although it was not detected in the single-zone models.  
 

In contrast, the 4-period increasing catchability model clearly provided the best fit to 
the multizone CPUE data and was by far the most likely model. This model incorporated the 
assumption that catchability had increased based on changes in the fishery and fishing gear as 
in Moffitt et al. (2006). In comparison, the alternative multizone models that assumed 
constant or density-dependent catchability received relatively little support from the data and 
were highly improbable. 
 

One technical concern about the current bottomfish assessment is that the CPUE data 
provide limited information on resource productivity because of the characteristic one-way 
trip from high to low biomass with no return to high biomass (see, for example, Hilborn and 
Walters, 1992). Based on the parameter correlations, the biomass scaling parameters of 
carrying capacity and fishery catchability have strong negative correlations for the single- and 
multizone models. This effect might be expected since an increasing catchability implies a 
lower biomass for fixed CPUE. Regardless, the carrying capacity estimate for MHI had 
consistent values across alternative models. The carrying capacities of the Mau and Ho’omalu 
Zones, in contrast, did not appear to be identifiable since the Bayesian MCMC simulations 
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did not converge when the carrying capacities were free parameters. This lack of 
identifiability is not surprising given the correlations between K and Q and the short time 
series for the Mau and Ho’omalu Zones. In contrast, comparing estimates of parameters for 
MHI under the single- and multizone modeling approaches suggests that the carrying capacity 
estimate is relatively robust in the inclusion of multizone CPUE data. 
 

In contrast to the carrying capacity parameter, it appears that the intrinsic growth rate 
parameter could be freely estimated for each zone. This is important because the intrinsic 
growth rate of the bottomfish complex might be expected to vary given the substantial 
latitudinal differences among fishing zones. It is interesting that intrinsic growth rate 
estimates by fishing zone showed a cline from a low in the Ho’omalu Zone to a high in MHI. 
This cline may reflect average physical transport of bottomfish larvae under the general 
northwest to southeast current flow in the Archipelago. Recent research by Kobyashi using 
simulations of circulation models for the region (pers. comm., unpublished manuscript)  
suggests that one might expect higher larval retention in MHI, and hence a potentially higher 
intrinsic growth rate. 
 

The shape parameter of the power function surplus production curve does not appear 
to be essential for the multizone models. This also held true for the single-zone models in the 
sense that when the shape parameter was freely estimated, it was not significantly different 
from 1.0. This supports the assumption that a Schaefer production model, as in the current 
assessment, is reasonable for the Hawaiian bottomfish data despite controversy over the 
appropriateness of this simple model (Maunder, 2004; Praeger, 2004). It remains to be seen 
whether future work will show that a skewed production curve is more appropriate for 
Hawaiian bottomfish. 
 

Estimation of the initial proportion of carrying capacity is hampered by a lack of 
auxiliary information on likely values of this parameter across the three fishing zones. In any 
case, fitting the CPUE data did not alter the prior assumption that the complex was fluctuating 
near carrying capacity. This indicates that there was little or no information in the CPUE data 
to adjust the prior assumption. While it may be appropriate to consider the bottomfish 
resource of MHI to be fluctuating near carrying capacity at the beginning of the assessment 
time horizon in 1948, it is clear that this assumption is questionable for the Mau and 
Ho’omalu Zones in 1988. Although the NWHI zones have experienced much lower 
exploitation rates than MHI, the bottomfish stocks in the NWHI zones were likely fished to 
more productive levels below carrying capacity by the mid-1980s.  
 

The effect of overestimating the initial proportion of carrying capacity on estimated 
trends in biomass and fishing mortality may be moderate since there was a lack of strong 
correlation between the estimates of initial proportion of carrying capacity for the MHI and 
Mau Zones. The Ho’omalu Zone initial proportion of carrying capacity was strongly 
correlated with the goodness of fit suggesting that it was potentially important for this zone. 
Sensitivity analyses using an informative prior on initial proportion of carrying capacity 
suggested it had a weak influence on most parameter estimates.  Overall, it appeared that 
overestimating the initial proportion of carrying capacity altered the overall scale of trends in 
biomass and fishing mortality but did not affect their relative trends. 
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Results from the Bayesian surplus production modeling approach were generally 

similar to those of Moffitt et al. (2006). Estimates of biomass and fishing mortality trends 
were consistent across modeling approaches. The results indicated higher intrinsic growth 
rates and this led to higher estimates of MSY and HMSY. In particular, the overfishing 
threshold would increase by about 40–50% based on the model-averaged results. In 
comparison, the estimates of carrying capacity were very similar to those in Moffitt et al. 
(2006) indicating that target biomasses (BMSY) were unaffected by differences in the modeling 
approach. Given the potential for strong correlation between carrying capacity and intrinsic 
growth rate under the Bayesian estimation approach, estimates of reference points warrant a 
cautious interpretation. For example, if carrying capacity (and hence BMSY) is underestimated, 
then intrinsic growth rate (and hence HMSY) is likely being overestimated. Such a scenario 
could occur, for example, if the recreational bottomfish catch is substantial in comparison to 
commercial catch but recreational catch is not included in the surplus production model. 
Overall, the use of precautionary total allowable catch adjustments, as recommended in 
Restrepo et al. (1998) would be a prudent management approach given the uncertainty in 
biological reference points. 
 

The use of diffuse priors for intrinsic growth rate led to estimates that were higher than 
those obtained with an informative prior. This increase in the estimated intrinsic growth rate 
suggests that the CPUE and reported catch data are not entirely consistent with the 
informative prior mean for intrinsic growth rate. This mismatch could occur because a higher 
growth rate would be needed to account for the observed catch relative to changes in CPUE. 
Overall, the effect of not including recreational catch will be to underestimate the potential 
productivity of the bottomfish resource, as suggested in the sensitivity analyses of the effect 
of misreported catch and the hypothetical recreational to commercial catch ratio.  
 

The potential importance of environmental forcing on bottomfish was suggested by 
the negative correlations of SSH anomalies with CPUE residuals in each of the regions. 
Although the actual biological response is unknown, the correlated residual patterns could 
arise from at least two sources. First, the pattern could be the direct result of changes in food 
availability for bottomfish. In particular, the increase in bottom-up productivity that arises 
when SSHs are relatively low because of increased upwelling and current divergence could 
increase the amount of zooplankton and other small nekton available to snappers that 
consume zooplankton (Haight et al., 1993). Second, changes in productivity as indexed by 
SSH anomalies may alter the depth or spatial distribution of bottomfish as they forage. If this 
behavioral effect was consistent across species through time it could alter bottomfish 
catchability coefficients and lead to differences between observed and model predictions of 
CPUE. Regardless of the mechanism, it would be useful to extend the time frame of the SSH 
analysis to better understand the nature and extent of the apparent coupling. 
 

If fishery-dependent and fishery-independent data collection systems for Hawaiian 
bottomfish could be augmented, then it seems likely that age- or length-structured assessment 
models could be applied to assess individual bottomfish species. The first priority in this 
context would be to sample the existing recreational fishery operations so as to estimate the 
total recreational catch as well as the length composition by species. The collection of length 
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composition and length-weight measurements from the Honolulu fish auction would provide 
direct information on commercial fishery removals with only a minor, if any, effect on the 
quality of fish offered for sale. Such data could be used to evaluate the catch at age by species 
given sufficient age-length keys and ongoing sampling effort. The collection of age samples 
(otoliths) and food habits (stomachs) data is more challenging because it would require 
invasive sampling of individual fish. Nonetheless, this information is crucial to estimating life 
history parameters and characterizing the strength of biological interactions among bottomfish 
species. In any case, to enable analysis of spatial variability, it will be important to obtain 
georeferenced data to be able to accurately identify where samples of fish were caught. In 
particular, being able to identify the location of catch, length frequency, stomach, and otolith 
samples would greatly enhance the use and interpretation of such data in relation to existing 
and planned bottomfish restricted fishing areas as well as essential fish habitat. Last, the 
development of a consistent fishery-independent survey of Hawaiian bottomfish would 
greatly enhance the capacity to assess and manage these resources. 
 

The effects of using a more formal statistical approach to fit bottomfish surplus 
production models were moderate but important in some cases. In particular, the status 
determination criteria estimates from these models were, for the most part, consistent with the 
current assessment although the overall status of the Archipelago differed. In technical terms, 
the most direct consequence of using the Bayesian surplus production models was that 
parameter uncertainty can be directly estimated. This is an important feature if fishery 
management incorporates analyses of risk or if precautionary adjustments are used to buffer 
against uncertainty in a data-limited situation. The use of risk analyses seems likely given that 
the MHI bottomfish complex has depressed biomass and is experiencing excess fishing 
mortality. In addition, the application of model averaging appears to be very useful in this 
setting because it allows for alternative model structures to be evaluated and results to be 
melded together in an objective manner. For the single-zone main Hawaiian Islands scenario, 
there was some model ambiguity and the use of model-averaged estimates provided a clear 
way to describe results. In contrast, the multizone model comparison indicated that there was 
really only one model that provided the best fit to the data. In this case, the use of the single 
best-fitting model was appropriate, conditioned on the typical caveats associated with 
interpreting any quantitative stock assessment (e.g., Koeller, 2003). 
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Table 1.--Hawaiian bottomfish species used for production model analyses from Moffitt et al. 
                (2006). 
 

 
Common name 

 
Local name 

 
Scientific name 

Pink snapper Opakapaka Pristipomoides filamentosus 
Longtail snapper Onaga Etelis coruscans 
Squirrelfish snapper Ehu Etelis carbunculus 
Sea bass Hapuupuu Epinephelus quernus 
Grey jobfish Uku Aprion virescens 
Snapper Gindai Pristipomoides zonatus 
Snapper Kalekale Pristipomoides sieboldii 
Yelloweye snapper Yelloweye opakapaka Pristipomoides flavipinnis 
Blue stripe snapper Taape Lutjanus kasmira 
Yellowtail snapper Yellowtail kalekale Pristipomoides auricilla 
Silver jaw jobfish Lehi Aphareus rutlians 
Amberjack Kahala Serioila dumerili 
Thick lipped trevally Butaguchi Pseudocaranx dentex 
Giant trevally White ulua Caranx ignoblis 
Black jack Black ulua Caranx lugubris 
Armorhead  Pseudopentaceros richardsoni 
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Table 2.1.--Summary of  the mean of the posterior distribution of main Hawaiian Islands (MHI) bottomfish surplus production model 
parameter estimates and the standard error (in parentheses) for models that were fit to only the MHI catch-per-unit-effort 
(CPUE) data as well as estimates of harvest rate (H2004/HMSY) and biomass (B2004/BMSY) status determination criteria in 
2004.  

 
 
 
 
 
Model description 

 
 
RMSE 
for MHI 
CPUE fit 

 
 

MHI 
Catchability 

(Q) 

 
MHI 

Intrinsic 
Growth 
Rate (R) 

 
MHI 

Carrying 
Capacity (K, 
000s of  lbs) 

 
MHI 
Initial 

Proportion 
of K (P1) 

 
MHI 

Shape 
Parameter 

(M) 

MHI 
Process 
Error 

Variance  
(η2) 

MHI 
Observation 

Error 
Variance 

(υ2) 

 
MHI Harvest 
Rate Ratio in 

2004 
(H2004/HMSY) 

MHI 
Biomass 
Ratio in 

2004 
(B2004/BMSY) 

Model (1) 
Lognormal process 
& observation 
error; power 
function dynamics; 
constant Q 

0.098 
(0.031) 

2.20E-04 
(1.87E-05) 

0.68 
(0.06)  

3095 
(218) 

0.94 
(0.09) 

1.34 
(0.30) 

0.038 
(0.012) 

0.011 
(0.007) 

1.18 
(0.14) 

0.50 
(0.06) 

Model (2)  
Same as (1) with 
uniform catch error 
1948–89,1990–04 

0.102 
(0.036) 

2.17E-04 
(1.82E-05) 

0.68 
(0.06) 

3154 
(226) 

0.93 
(0.08) 

1.48 
(0.37) 

0.041 
(0.013) 

0.012 
(0.009) 

1.13 
(0.14) 

0.49 
(0.06) 

Model (3) 
Same as (1) but 
uses 4-period Q 
submodel from  
AR-06-01 

0.107 
(0.035) 

2.50E-04 
(2.02E-05) 

0.74 
(0.06) 

3476 
(217) 

1.03 
(0.10) 

1.11 
(0.22) 

0.048 
(0.015) 

0.013 
(0.010) 

1.64 
(0.21) 

0.34 
(0.04) 

Model (4) 
Same as (1) but 
uses Schaefer 
dynamics instead of 
power function 

0.101 
(0.029) 

2.48E-04 
(1.67E-05) 

0.75 
(0.05) 

3507 
(195) 

1.03 
(0.10) 

 0.048 
(0.015) 

0.011 
(0.007) 

1.66 
(0.20) 

0.34 
(0.04) 

Model average 
 
 

0.099 
(0.030) 

2.31E-04 
(2.03E-05) 

0.71 
(0.07) 

3252 
(290) 

0.97 
(0.10) 

1.21 
(0.29) 

0.042 
(0.014) 

0.011 
(0.007) 

1.36 
(0.29) 

0.44 
(0.09) 
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Table 2.2.--Summary of  the mean of the posterior distribution of main Hawaiian Islands (MHI) bottomfish surplus production model 

parameter estimates and standard error (in parentheses) for models that were fit to the MHI, Mau, and Ho’omalu Zone 
catch-per-unit effort data as well as estimates of harvest rate (H2004/HMSY) and biomass (B2004/BMSY) status determination 
criteria in 2004.  

 
 
 
 
 
 
Model description 

 
 

RMSE 
for MHI 
CPUE fit 

 
 

MHI 
Catchability 

(Q) 

 
MHI 

Intrinsic 
Growth 
Rate (R) 

 
MHI 

Carrying 
Capacity (K, 
000s of lbs) 

 
MHI 
Initial 

Proportion 
of K (P1) 

 
MHI 

Shape 
Parameter 

(M) 

MHI 
Process 
Error 

Variance  
(η2) 

MHI 
Observation 

Error 
Variance 

(υ2) 

 
MHI Harvest 
Rate Ratio in 

2004 
(H2004/HMSY) 

MHI 
Biomass 
Ratio in 

2004 
(B2004/BMSY) 

Model (5)  
Same as (4) except 
Mau/Ho’omalu 
Zone K set to be 
habitat fraction of 
MHI K, assumes a  
common R among 
zones, and uses a 
constant Q 

0.100 
(0.029) 

2.44E-04 
(1.68E-05) 

0.737 
(0.056) 

3547 
(194) 

1.04 
(0.10) 

 0.048 
(0.015) 

0.011 
(0.007) 

1.67 
(0.20) 

0.34 
(0.04) 

Model (6) 
Same as (5) but 
uses 4-period Q 
submodel for MHI 
from AR-06-01 

0.089 
(0.026) 

2.05E-04 
(1.63E-05) 

 0.703 
(0.057) 

3276 
(200) 

0.96 
(0.09) 

 0.039 
(0.011) 

0.009 
(0.005) 

1.21 
(0.14) 

0.53 
(0.06) 

Model (7) 
Same as (6) but 
uses power function 
dynamics 

0.101 
(0.031) 

2.43E-04 
(2.00E-05) 

0.735 
(0.059) 

3542 
(208) 

1.04 
(0.10) 

1.02 
(0.20) 

0.049 
(0.015) 

0.011 
(0.008) 

1.68 
(0.21) 

0.34 
(0.04) 

Model (8) 
Same as (6) but 
estimates a separate 
R for each zone 

0.100 
(0.029) 

2.45E-04 
(1.64E-05) 

0.746 
(0.054) 

3554 
(190) 

1.03 
(0.10) 

 0.047 
(0.014) 

0.011 
(0.007) 

1.65 
(0.19) 

0.34 
(0.04) 
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Table 2.2. Continued.  
 
 
 
 
Model description 

 
 

RMSE 
for MHI 
CPUE fit 

 
 

MHI 
Catchability 

(Q) 

 
MHI 

Intrinsic 
Growth 
Rate (R) 

 
MHI 

Carrying 
Capacity (K, 
000s of lbs) 

 
MHI 
Initial 

Proportion 
of K (P1) 

 
MHI 

Shape 
Parameter 

(M) 

MHI 
Process 
Error 

Variance 
(η2) 

MHI 
Observation 

Error 
Variance 

(υ2) 

 
MHI Harvest 
Rate Ratio in 

2004 
(H2004/HMSY) 

MHI 
Biomass 
Ratio in 

2004 
(B2004/BMSY) 

Model (9)  
Same as (8) but 
assumes density-
dependent 
catchability in MHI  

0.097 
(0.029) 

4.17E-04 
(2.15E-04) 

0.714 
(0.056) 

3337 
(195) 

0.98 
(0.10) 

 0.043 
(0.014) 

0.010 
(0.006) 

1.28 
(0.18) 

0.49 
(0.07) 

Model (10) 
Same as (8) but 
estimates K for 
each zone 

Did not 
converge 

         

Model (11) 
Same as (7) but 
estimates a separate 
R for each zone 

0.104 
(0.031) 

2.46E-04 
(1.96E-05) 

0.740 
(0.057) 

3530 
(207) 

1.03 
(0.10) 

1.06 
(0.19) 

0.048 
(0.014) 

0.012 
(0.008) 

1.65 
0.20 

0.34 
(0.04) 

Model (12) 
Same as (11) but 
uses power function 
dynamics only for 
MHI 

0.104 
(0.032) 

2.47E-04 
(1.99E-05) 

0.736 
(0.058) 

3532 
(206) 

1.03 
(0.11) 

1.08 
(0.21) 

0.048 
(0.015) 

0.012 
(0.008) 

1.64 
(0.21) 

0.34 
(0.04) 

Model (13) 
Same as (8) but 
assumes a 3-period 
Q model for MHI 
(combines 1st & 2nd 
Q periods) 

0.102 
(0.028) 

2.31E-04 
(1.56E-05) 

0.748 
(0.052) 

3464 
(187) 

0.99 
(0.09) 

 0.038 
(0.012) 

0.011 
(0.007) 

1.54 
(0.18) 

0.37 
(0.04) 

Model (14) 
Same as (6) but 
includes estimate of 
recreational catch 

0.087 
(0.026) 

1.808E-04 
(1.23E-05) 

0.770 
(0.053) 

3665 
(192) 

0.96 
(0.09) 

 0.048 
(0.014) 

0.008 
(0.005) 

1.28 
(0.14) 

0.54 
(0.05) 
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Table 3.1.--Goodness of fit of the alternative single-zone, MHI surplus production models along with mean posterior values of MSY-
related reference points, model-averaged estimates and their coefficients of variation (CV) and corresponding values from 
Moffitt et al. (2006). 

 
 

Model 
AIC 

Difference Δk 

Relative 
Likelihood 

Evidence 
Ratio 

Model 
Probability 

 
BMSY 

 
MSY 

 
HMSY 

1 — 1.0 1 0.619 1640 627 0.38 
2 Not applicable    1700 673 0.40 
3 9.2 0.010 99.5 0.006 1767 679 0.38 
4 1 0.607 1.6 0.375 1753 658 0.38 

Model 
Average 

    
1683 639 0.38 

CV     7.0% 8.5% 8.7% 
Moffitt et al. 

(2006) 
    

1593 362 0.23 
 
 



 30

Table 3.2.1.--Goodness of fit of the alternative multizone MHI surplus production models along with mean posterior values of MSY-
related reference points, model-averaged estimates and their coefficients of variation (CV) and corresponding values 
from Moffitt et al. (2006). 

 
 

 
Model 

AIC 
Difference Δk 

Relative 
Likelihood 

Evidence 
Ratio 

Model 
Probability 

 
BMSY 

 
MSY 

 
HMSY 

5 13.0 0.002 665 0.002 1773 652 0.37 
6 — 1.000 1 0.998 1638 574 0.35 
7 17.2 0.000 5432 0.000 1772 649 0.37 
8 17.6 0.000 6634 0.000 1777 662 0.37 
9 16.7 0.000 4230 0.000 1668 594 0.36 
11 24.2 0.000 179872 0.000 1781 672 0.38 
12 27.4 0.000 890911 0.000 1789 677 0.38 
13 19.9 0.000 20952 0.000 1732 646 0.37 
14 Not applicable    1832 705 0.38 

Model 
Average 

    
1638 574 0.35 

CV     6.1% 7.1% 8.0% 
Moffitt et al. 

(2006) 
    

1593 362 0.23 
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Table 3.2.2.--Goodness of fit of the alternative multizone Mau Zone surplus production models along with mean posterior values of 
MSY-related reference points, model-averaged estimates and their coefficients of variation (CV) and corresponding 
values from Moffitt et al. (2006). 

 
 

 
Model 

AIC 
Difference Δk 

Relative 
Likelihood 

Evidence 
Ratio 

Model 
Probability 

 
BMSY 

 
MSY 

 
HMSY 

5 13.0 0.002 665 0.002 491 181 0.37 
6 - 1.000 1 0.998 454 159 0.35 
7 17.2 0.000 5432 0.000 491 180 0.37 
8 17.6 0.000 6634 0.000 488 135 0.28 
9 16.7 0.000 4230 0.000 462 130 0.28 
11 24.2 0.000 179872 0.000 493 141 0.29 
12 27.4 0.000 890911 0.000 489 135 0.28 
13 19.9 0.000 20952 0.000 480 134 0.28 
14 Not applicable    508 195 0.38 

Model 
Average 

    
454 159 0.35 

CV     6.1% 7.1% 8.0% 
Moffitt et al. 

(2006) 
    

441 100 0.23 
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Table 3.2.3.--Goodness of fit of the alternative multizone Ho’omalu Zone surplus production models along with mean posterior values 
of MSY-related reference points, model-averaged estimates and their coefficients of variation (CV) and corresponding 
values from Moffitt et al. (2006). 

 
 

Model 
AIC 

Difference Δk 

Relative 
Likelihood 

Evidence 
Ratio 

Model 
Probability 

 
BMSY 

 
MSY 

 
HMSY 

5 13.0 0.002 665 0.002 1703 626 0.37 
6 — 1.000 1 0.998 1573 551 0.35 
7 17.2 0.000 5432 0.000 1701 623 0.37 
8 17.6 0.000 6634 0.000 1692 458 0.27 
9 16.7 0.000 4230 0.000 1602 436 0.27 
11 24.2 0.000 179872 0.000 1707 481 0.28 
12 27.4 0.000 890911 0.000 1695 460 0.27 
13 19.9 0.000 20952 0.000 1663 451 0.27 
14 Not applicable    1759 676 0.38 

Model 
Average 

    
1573 551 0.35 

CV     6.1% 7.1% 8.0% 
Moffitt et al. 

(2006) 
    

1531 348 0.23 
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Table 3.2.4.--Goodness of fit of the alternative multizone Hawaiian Archipelago surplus production models along with mean posterior 
values of MSY-related reference points, model-averaged estimates and their coefficients of variation (CV) and 
corresponding values from Moffitt et al. (2006). 

 
 

 
Model 

AIC 
Difference Δk 

Relative 
Likelihood 

Evidence 
Ratio 

Model 
Probability 

 
BMSY 

 
MSY 

 
HMSY 

5 13.0 0.002 665 0.002 3967 1459 0.37 
6 - 1.000 1 0.998 3665 1284 0.35 
7 17.2 0.000 5432 0.000 3964 1452 0.37 
8 17.6 0.000 6634 0.000 3975 1259 0.32 
9 16.7 0.000 4230 0.000 3730 1159 0.31 
11 24.2 0.000 179872 0.000 3984 1292 0.32 
12 27.4 0.000 890911 0.000 3974 1272 0.32 
13 19.9 0.000 20952 0.000 3875 1231 0.32 
14 Not applicable    4099 1576 0.38 

Model 
Average 

    
3666 1284 0.35 

CV     6.1% 7.1% 8.0% 
Moffitt et al. 

(2006) 
    

3566 811 0.23 
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Table 4.--Sensitivity of parameter estimates for the most likely bottomfish surplus production 
models. Mean estimates for the baseline model (with percentage coefficients of 
variation below), along with mean estimates from model runs with the diffuse prior 
distribution for intrinsic growth rate (R) and with a 50% lower prior mean for the initial 
proportion of carrying capacity (with percent change from the baseline values in 
parentheses).  

 
 
 
Bottomfish Surplus 
Production Model 

MHI 
Intrinsic 
Growth 
Rate (R) 

MHI 
Carrying 
Capacity (K, 
000s of lbs) 

 
MHI Initial 
Proportion 
of K (P1948) 

MHI 
Current 
Proportion 
of K (P2004) 

Model (1) Baseline 
 
 

0.68 
9%  

3095 
7% 

0.94 
10% 

0.27 
11% 

Model (1) Higher CV for 
Prior on R 
 

0.88 
(29%) 

2949 
(-5%) 

0.93 
(-1%) 

0.26 
(-4%) 

Model (1) 50% Lower 
Prior Mean on Initial 
Proportion of K 

0.68 
(0%) 

3062 
(-1%) 

0.83 
-12%) 

0.25 
(-7%) 

Model (4) Baseline 
 
 

0.74 
8% 

3476 
6% 

1.03 
10% 

0.17 
12% 

Model (4) Higher CV for 
Prior on R 
 

0.93 
(26%) 

3196 
(-8%) 

0.98 
(-5%) 

0.17 
(0%) 

Model (4) 50% Lower 
Prior Mean on Initial 
Proportion of K 

0.76 
(3%) 

3474 
(0%) 

0.93 
(-10%) 

0.17 
(0%) 

Model (6) Baseline 
 
 

0.70 
9% 

3276 
6% 

0.96 
9% 

0.27 
11% 

Model (6) Higher CV for 
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Figure 1.--Location of the Hawaiian bottomfish assessment zones: MHI, the Mau Zone, and the 

Ho’omalu Zone. 
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Figure 2.--Nominal commercial bottomfish landings by assessment zone, 1948-2004. 
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Figure 3.--Commercial bottomfish catch-per-unit-effort by assessment zone.
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Figure 4.--Trajectories of CPUE and fishing effort for MHI (A), the Mau Zone (B), and the 

Ho’omalu Zone (C). 
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Figure 4.--Continued. 
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Figure 4.--Continued. 
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Figure 5.--Effect of shape parameter M on the relationship between surplus production and the 
biomass as a proportion of carrying capacity.
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Figure 6.--Convergence diagnostic plots for carrying capacity (K), production 
shape parameter (M), initial proportion of carrying capacity (P[1], root-mean 
squared error (RMSE_MHI), catchability (qMHI), and intrinsic growth rate (r) 
estimates for MHI from the best fitting single-zone model. 
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Figure 7.--Time series of standardized mean residuals for the single zone main Hawaiian Islands (MHI) bottomfish surplus production 

models, 1948–2004.  
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Figure 8.--Quantile-quantile plots of mean residuals of the single zone main Hawaiian Islands (MHI) 
bottomfish surplus production models during 1948-2004: model 1 (M1), model 2 (M2), 
model 3 (M3), and model 4 (M4). 
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Figure 9.--Model averaged estimates of the hypothetical status of MHI bottomfish complex 

during 1948–2004 based on the single-zone MHI models if assessed as a separate 
management unit. 
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Figure 10.--Convergence diagnostic plots for MHI carrying capacity (K_MHI), initial 

proportions of carrying capacity by zone (P_*[1]), root-mean squared error by zone 
(RMSE_*), catchability by zone (q_*), and intrinsic growth rate (r) estimates from  
model 6, the most probable multizone model (p>0.99). 
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Figure 10.--Continued.
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Figure 11.--Time series of standardized mean residuals for the most probable (p > 0.99) 

multizone bottomfish surplus production model fits to the Ho’omalu Zone, Mau Zone 
and main Hawaiian Islands (MHI) during 1948–2004.  
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Figure 12.--Quantile-quantile plots of mean residuals of the most probable (p > 
0.99 multizone bottomfish surplus production model: main Hawaiian Islands 
(M6), Mau Zone (Mau), and Ho’omalu Zone (Ho’omalu). 
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Figure 13.--Model averaged estimates of the hypothetical status of MHI bottomfish complex 

during 1948–2004 based on the MHI multizone models if assessed as a separate 
management unit.. 
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Figure 14.--Model averaged estimates of the hypothetical status of the Mau Zone bottomfish 

complex during 1948–2004 based on the Mau multizone models if assessed as a 
separate management unit.. 
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Figure 15.--Model averaged estimates of the hypothetical status of the Ho’omalu Zone 

bottomfish complex during 1948–2004 based on the Ho’omalu multizone models if 
assessed as a separate management unit. 
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Figure 16.--Model averaged estimates of the hypothetical status of the Hawaiian Archipelago 

bottomfish complex during 1948–2004 based on the Hawaiian Archipelago multizone 
models if assessed using the alternative production modeling approach. 
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Figure 17.--Association (Pearson correlation coefficient ρ) between winter (January–March) 

SSH anomalies in the MHI during 1993–2000 and the MHI standardized CPUE 
residuals from the most probable (p > 0.99) multizone bottomfish surplus 
production model. 
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Association between Mau Zone Model CPUE Residuals
 and Winter Sea Surface Height Anomalies, 1993-2000
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Figure 18.--Association (Pearson correlation coefficient ρ) between winter (January–March) 

SSH anomalies in the Mau Zone during 1993–2000 and the Mau Zone standardized 
CPUE residuals from the most probable (p > 0.99) multizone bottomfish surplus 
production model. 
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Association between Hoomalu Zone Model CPUE Residuals
 and Winter Sea Surface Height Anomalies, 1993-2000
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Figure 19.--Association (Pearson correlation coefficient ρ) between winter (January–March) 

SSH anomalies in the Ho’omalu Zone during 1993–2000 and the Ho’omalu Zone 
standardized CPUE residuals from the most probable (p > 0.99) multizone 
bottomfish surplus production model. 
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Main Hawaiian Islands Bottomfish Complex
Single-Zone Model-Averaged Projections of Catch
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Figure 20.--Single-zone projections of biomass status and catch for MHI under two harvesting 

scenarios. Horizontal (red) line in upper graph is threshold for overfished status. 
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Main Hawaiian Islands Bottomfish Complex
Multizone Model-Averaged Projections of Biomass Status
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Main Hawaiian Islands Bottomfish Complex
Multizone Model-Averaged Projections of Catch

Year

2005 2006

Pr
oj

ec
te

d 
C

at
ch

 (t
ho

us
an

d 
lb

s)

0

100

200

300

400

500

600

FMSY
Status Quo

 
Figure 21.--Multizone projections of biomass status and catch for MHI under two harvesting 

scenarios. Horizontal (red) line in upper graph is threshold for overfished status. 
 
 



 59

Appendix. WINBUGS code to fit model 6, the most probable multizone bottomfish surplus 
production model, to MHI, Mau, and Ho’omalu Zone data. 
 
Hawaiian Bottomfish: Archipelagic Assessment 
Bayesian State-Space Implementation  
of Schaefer Production Model 
 
# Jon Brodziak, PIFSC, May 2006 
# Catch units are thousands of pounds 
# CPUE units are thousands of pounds per trip 
# BFISH6 analyzes MHI catch & cpue data for 1948-2004 
# BFISH6 analyzes Mau and Ho’omalu catch & cpue data for 1988-2004 
# BFISH6 assumes no catch error 
# BFISH6 assumes no changes in MHI catchability 
# BFISH6 assumes a common intrinsic growth rate across regions, r 
# BFISH6 estimates carrying capacity for MHI only 
# BFISH6 assumes carrying capacities for Mau and Ho’omalu are proportional to habitat 
####################################################################### 
 
model BFISH6 
{ 
 
# Prior distributions 
#################################################### 
 
# Diffuse normal prior for carrying capacity parameter, K 
#(1)################################################### 
K_MHI ~ dnorm(2000,0.00001) 
K_Mau <- 0.277*K_MHI 
K_Hoomalu <- 0.960*K_MHI 
 
# Beta prior for intrinsic growth rate parameter, r 
# with mean=0.5 and CV=20% 
#(2)################################################### 
 y ~ dbeta(12.0,12.0) 
r <- 0.1+(0.9*y) 
 
# Gamma priors for CPUE catchability coefficients 
# within interval (0.0001,10), q 
#(3)################################################### 
iq_MHI ~ dgamma(0.001,0.001)I(0.1,10000) 
q_MHI <- 1/iq_MHI 
iq_Mau ~ dgamma(0.001,0.001)I(0.1,10000) 
q_Mau <- 1/iq_Mau 
iq_Hoomalu ~ dgamma(0.001,0.001)I(0.1,10000) 
q_Hoomalu <- 1/iq_Hoomalu 
 
# Gamma prior for process error variances, sigma2 
#(4)################################################### 
isigma2_MHI ~ dgamma(a0_MHI,b0_MHI) 
sigma2_MHI <- 1/isigma2_MHI 
isigma2_Mau ~ dgamma(a0_Mau,b0_Mau) 
sigma2_Mau <- 1/isigma2_Mau 
isigma2_Hoomalu ~ dgamma(a0_Hoomalu,b0_Hoomalu) 
sigma2_Hoomalu <- 1/isigma2_Hoomalu 
 
# Gamma priors for observation error variances, tau2 
#(5)################################################### 
itau2_MHI   ~ dgamma(c0_MHI,d0_MHI) 
tau2_MHI   <- 1/itau2_MHI 
itau2_Mau   ~ dgamma(c0_Mau,d0_Mau) 
tau2_Mau   <- 1/itau2_Mau 
itau2_Hoomalu   ~ dgamma(c0_Hoomalu,d0_Hoomalu) 
tau2_Hoomalu   <- 1/itau2_Hoomalu 
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# Lognormal priors for time series of proportions of K, P 
#(6)################################################### 
# MHI time series starts in 1948 and ends in 2004 
Pmean_MHI[1] <- 0 
P_MHI[1] ~ dlnorm(Pmean_MHI[1],isigma2_MHI) I(0.001,10) 
 
# Process dynamics 
for (i in 2:N_MHI) { 
   Pmean_MHI[i] <- log(max(P_MHI[i-1] + r*P_MHI[i-1]*(1-P_MHI[i-1]) - Catch_MHI[i-1]/K_MHI,0.001)) 
    P_MHI[i]  ~ dlnorm(Pmean_MHI[i],isigma2_MHI)I(0.001,10) 
    } 
 
# Mau time series starts in 1988 and ends in 2004 
Pmean_Mau[1] <- 0 
P_Mau[1] ~ dlnorm(Pmean_Mau[1],isigma2_Mau) I(0.001,10) 
 
# Process dynamics 
for (i in 2:N_Mau) { 
   Pmean_Mau[i] <- log(max(P_Mau[i-1] + r*P_Mau[i-1]*(1-P_Mau[i-1]) - Catch_Mau[i-1]/K_Mau,0.001)) 
    P_Mau[i]  ~ dlnorm(Pmean_Mau[i],isigma2_Mau)I(0.001,10) 
    } 
 
# Ho’omalu time series starts in 1988 and ends in 2004 
Pmean_Hoomalu[1] <- 0 
P_Hoomalu[1] ~ dlnorm(Pmean_Hoomalu[1],isigma2_Hoomalu) I(0.001,10) 
 
# Process dynamics 
for (i in 2:N_Hoomalu) { 
   Pmean_Hoomalu[i] <- log(max(P_Hoomalu[i-1] + r*P_Hoomalu[i-1]*(1-P_Hoomalu[i-1]) - Catch_Hoomalu[i-1]/K_Hoomalu,0.001)) 
    P_Hoomalu[i]  ~ dlnorm(Pmean_Hoomalu[i],isigma2_Hoomalu)I(0.001,10) 
    } 
 
# Lognormal likelihood for observed CPUE indices 
#(7)################################################### 
# MHI CPUE LIKELIHOOD 1948-2004 P_MHI[1:57], qMultiplier=1 
for (i in 1:N_MHI) { 
     CPUEmean_MHI[i] <- log(q_MHI*K_MHI*P_MHI[i]) 
     CPUE_MHI[i] ~ dlnorm(CPUEmean_MHI[i],itau2_MHI) 
     RESID_MHI[i] <- log(CPUE_MHI[i]) - log(q_MHI*K_MHI*P_MHI[i]) 
 } 
# Compute RMSE for MHI CPUE 
RSS_MHI <- inprod(RESID_MHI[], RESID_MHI[]) 
RMSE_MHI <- sqrt(RSS_MHI/N_MHI) 
AIC_MHI <- N_MHI*log(RSS_MHI/N_MHI)+2*NPAR_MHI 
AICC_MHI <- AIC_MHI+2*NPAR_MHI*(NPAR_MHI+1)/(N_MHI-NPAR_MHI-1) 
 
# Mau CPUE LIKELIHOOD 1988-2004 P_Mau[1:17], qMultiplier=1 
for (i in 1:N_Mau) { 
     CPUEmean_Mau[i] <- log(q_Mau*K_Mau*P_Mau[i]) 
     CPUE_Mau[i] ~ dlnorm(CPUEmean_Mau[i],itau2_Mau) 
     RESID_Mau[i] <- log(CPUE_Mau[i]) - log(q_Mau*K_Mau*P_Mau[i]) 
 } 
# Compute RMSE for Mau CPUE 
RSS_Mau <- inprod(RESID_Mau[], RESID_Mau[]) 
RMSE_Mau <- sqrt(RSS_Mau/N_Mau) 
 
# Ho’omalu CPUE LIKELIHOOD 1988-2004 P_Hoomalu[1:17], qMultiplier=1 
for (i in 1:N_Hoomalu) { 
     CPUEmean_Hoomalu[i] <- log(q_Hoomalu*K_Hoomalu*P_Hoomalu[i]) 
     CPUE_Hoomalu[i] ~ dlnorm(CPUEmean_Hoomalu[i],itau2_Hoomalu) 
     RESID_Hoomalu[i] <- log(CPUE_Hoomalu[i]) - log(q_Hoomalu*K_Hoomalu*P_Hoomalu[i]) 
 } 
# Compute RMSE for Ho’omalu CPUE 
RSS_Hoomalu <- inprod(RESID_Hoomalu[], RESID_Hoomalu[]) 
RMSE_Hoomalu <- sqrt(RSS_Hoomalu/N_Hoomalu) 
 
# Use total likelihood for overall AIC calculation 
N_TOT <- N_MHI+N_Mau+N_Hoomalu 
AIC_TOT<- 
N_MHI*log(RSS_MHI/N_MHI)+N_Mau*log(RSS_Mau/N_Mau)+N_Hoomalu*log(RSS_Hoomalu/N_Hoomalu)+2*NPAR_TOT 
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AICC_TOT <- AIC_TOT+2*NPAR_TOT*(NPAR_TOT+1)/(N_TOT-NPAR_TOT-1) 
 
# Compute exploitation rate and biomass time series 
#(8)################################################### 
# MHI 1948-2004 P_MHI[1:57] 
for (i in 1:N_MHI) { 
     B_MHI[i] <- P_MHI[i]*K_MHI 
     H_MHI[i] <- Catch_MHI[i]/B_MHI[i] 
    }  
P2005_MHI <- max(P_MHI[N_MHI]+r*P_MHI[N_MHI]*(1-P_MHI[N_MHI])-Catch_MHI[N_MHI]/K_MHI,0.001) 
B2005_MHI <- P2005_MHI*K_MHI 
 
# Mau 1988-2004 P_Mau[1:17] 
for (i in 1:N_Mau) { 
     B_Mau[i] <- P_Mau[i]*K_Mau 
     H_Mau[i] <- Catch_Mau[i]/B_Mau[i] 
    }  
P2005_Mau <- max(P_Mau[N_Mau]+r*P_Mau[N_Mau]*(1-P_Mau[N_Mau])-Catch_Mau[N_Mau]/K_Mau,0.001) 
B2005_Mau <- P2005_Mau*K_Mau 
 
# Ho’omalu 1988-2004 P_Hoomalu[1:17] 
for (i in 1:N_Hoomalu) { 
     B_Hoomalu[i] <- P_Hoomalu[i]*K_Hoomalu 
     H_Hoomalu[i] <- Catch_Hoomalu[i]/B_Hoomalu[i] 
    }  
P2005_Hoomalu <- max(P_Hoomalu[N_Hoomalu]+r*P_Hoomalu[N_Hoomalu]*(1-P_Hoomalu[N_Hoomalu])-
Catch_Hoomalu[N_Hoomalu]/K_Hoomalu,0.001) 
B2005_Hoomalu <- P2005_Hoomalu*K_Hoomalu 
 
# Compute reference points 
#(9)################################################### 
# MHI Reference points 
BMSP_MHI <- K_MHI/2 
PMSP_MHI <- BMSP_MHI/K_MHI 
MSP_MHI <- r*K_MHI/4 
HMSP_MHI <- r/2 
INDEXMSP_MHI <- q_MHI*BMSP_MHI 
# MHI 1948-2004 BSTATUS_MHI and HSTATUS_MHI 
for (i in 1:N_MHI) { 
     BSTATUS_MHI[i] <- B_MHI[i]/BMSP_MHI 
     HSTATUS_MHI[i] <- H_MHI[i]/HMSP_MHI 
    } 
# Count=1 if status ratio >= 1 
p_MHI_above_BMSY <- step(BSTATUS_MHI[N_MHI] - 1.0) 
p_MHI_above_HMSY <- step(HSTATUS_MHI[N_MHI] - 1.0) 
 
# Mau Reference points 
BMSP_Mau <- K_Mau/2 
PMSP_Mau <- BMSP_Mau/K_Mau 
MSP_Mau <- r*K_Mau/4 
HMSP_Mau <- r/2 
INDEXMSP_Mau <- q_Mau*BMSP_Mau 
# Mau 1988-2004 BSTATUS_Mau and HSTATUS_Mau 
for (i in 1:N_Mau) { 
     BSTATUS_Mau[i] <- B_Mau[i]/BMSP_Mau 
     HSTATUS_Mau[i] <- H_Mau[i]/HMSP_Mau 
    } 
# Count=1 if status ratio >= 1 
p_Mau_above_BMSY <- step(BSTATUS_Mau[N_Mau] - 1.0) 
p_Mau_above_HMSY <- step(HSTATUS_Mau[N_Mau] - 1.0) 
 
# Ho’omalu Reference points 
BMSP_Hoomalu <- K_Hoomalu/2 
PMSP_Hoomalu <- BMSP_Hoomalu/K_Hoomalu 
MSP_Hoomalu <- r*K_Hoomalu/4 
HMSP_Hoomalu <- r/2 
INDEXMSP_Hoomalu <- q_Hoomalu*BMSP_Hoomalu 
# Ho’omalu 1988-2004 BSTATUS_Ho’omalu and HSTATUS_Ho’omalu 
for (i in 1:N_Hoomalu) { 
     BSTATUS_Hoomalu[i] <- B_Hoomalu[i]/BMSP_Hoomalu 



 62

     HSTATUS_Hoomalu[i] <- H_Hoomalu[i]/HMSP_Hoomalu 
    } 
# Count=1 if status ratio >= 1 
p_Hoomalu_above_BMSY <- step(BSTATUS_Hoomalu[N_Hoomalu] - 1.0) 
p_Hoomalu_above_HMSY <- step(HSTATUS_Hoomalu[N_Hoomalu] - 1.0) 
 
# Archipelago Reference points 
BMSP_Archipelago <- BMSP_MHI + BMSP_Mau + BMSP_Hoomalu 
MSP_Archipelago <- MSP_MHI + MSP_Mau + MSP_Hoomalu 
HMSP_Archipelago <- r/2 
K_Archipelago <- K_MHI + K_Mau + K_Hoomalu 
# Archipelago 1988-2004 BSTATUS_Archipelago and HSTATUS_Archipelago 
for (i in 1:N_Mau) { 
     BSTATUS_Archipelago[i] <- 
weight_MHI*BSTATUS_MHI[i+40]+weight_Mau*BSTATUS_Mau[i]+weight_Hoomalu*BSTATUS_Hoomalu[i] 
     HSTATUS_Archipelago[i] <- 
weight_MHI*HSTATUS_MHI[i+40]+weight_Mau*HSTATUS_Mau[i]+weight_Hoomalu*HSTATUS_Hoomalu[i] 
    } 
# Count=1 if status ratio >= 1 
p_Archipelago_above_BMSY <- step(BSTATUS_Archipelago[N_Mau] - 1.0) 
p_Archipelago_above_HMSY <- step(HSTATUS_Archipelago[N_Mau] - 1.0) 
 
# END OF CODE 
########################################################## 
} 
 

Data 
# Vector Catch() is total catch in thousand pounds 
# Vector CPUE() is  the catch per unit effort index 
# sigma2 is process error with parameters a0,b0 
# tau2 is observation error with parameters c0,d0 
#(10)######################################################### 
list( 
Catch_MHI=c(707.129,731.106,550.086,493.758,487.637,459.895,383.625,396.408,472.869,427.229,42
5.976,308.15,284.5,285.879,370.274,410.654,390.289,330.12,385.782,358.438,517.028,342.63,246.539,
314.096,343.249,368.054,339.85,455.507,455.871,447.279,550.464,540.68,494.952,551.978,623.68,801
.925,746.353,725.768,756.894,736.004,1083.039,922.349,590.45,511.406,546.445,432.877,488.591,512
.52,420.063,485.86,450.859,437.861,476.763,349.469,350.701,334.058,366.358), 
CPUE_MHI=c(0.614,0.713,0.677,0.621,0.577,0.645,0.887,0.755,0.784,0.789,0.533,0.519,0.63,0.496,0.4
91,0.518,0.619,0.503,0.536,0.602,0.478,0.48,0.433,0.433,0.514,0.421,0.329,0.43,0.485,0.527,0.635,0.38
,0.421,0.416,0.307,0.214,0.22,0.23,0.274,0.237,0.329,0.361,0.245,0.202,0.228,0.213,0.217,0.193,0.125,
0.176,0.13,0.209,0.187,0.194,0.179,0.19,0.171), 
N_MHI=57, NPAR_MHI=6, NPAR_TOT=14, 
a0_MHI=4.0,b0_MHI=0.01, 
c0_MHI=2.0,d0_MHI=0.01, 
weight_MHI=0.447, 
Catch_Mau=c(95.137,193.038,209.063,99.887,53.249,77.476,151.088,153.686,145.215,109.004,66.723,
60.264,54.276,49.927,112.376,98.728,96.547), 
CPUE_Mau=c(2.136,5.412,4.454,2.413,2.092,1.992,3.748,2.46,2.823,3.294,2.518,2.926,2.654,2.066,2.4
96,3.086,2.953), 
N_Mau=17, 
a0_Mau=4.0,b0_Mau=0.01, 
c0_Mau=2.0,d0_Mau=0.01, 
weight_Mau=0.124, 
Catch_Hoomalu=c(93.465,156.813,113.53,233.651,188.604,264.283,269.027,201.173,169.241,244.803,
273.844,281.984,226.935,217.447,127.33,151.748,169.238), 
CPUE_Hoomalu=c(4.702,5.328,4.793,5.928,7.388,8.04,4.651,5.544,5.87,5.234,5.198,4.606,5.212,5.3,4.
651,4.483,4.272), 
N_Hoomalu=17, 
a0_Hoomalu=4.0,b0_Hoomalu=0.01, 
c0_Hoomalu=2.0,d0_Hoomalu=0.01, 
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weight_Hoomalu=0.429 
) 

 
Inits 
#(11)######################################################### 
# Initial Condition 1 
list( 
y=0.5, 
P_MHI=c(0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0
.9,0.9,0.9,0.9,0.9,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,0.5,0.5), 
K_MHI=2000, 
iq_MHI=1000, 
isigma2_MHI=100, 
itau2_MHI=100 
P_Mau=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5), 
iq_Mau=1000, 
isigma2_Mau=100, 
itau2_Mau=100 
P_Hoomalu=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5), 
iq_Hoomalu=1000, 
isigma2_Hoomalu=100, 
itau2_Hoomalu=100 
) 
# Initial Condition 2 
list( 
y=0.75, 
P_MHI=c(0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0.9,0
.9,0.9,0.9,0.9,0.9,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.75,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,0.5,0.5), 
K_MHI=1000, 
iq_MHI=1000, 
isigma2_MHI=100, 
itau2_MHI=100 
P_Mau=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5), 
iq_Mau=1000, 
isigma2_Mau=100, 
itau2_Mau=100 
P_Hoomalu=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5), 
iq_Hoomalu=1000, 
isigma2_Hoomalu=100, 
itau2_Hoomalu=100 
) 
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